Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin
نویسندگان
چکیده
Niemann-Pick Protein C2 (npc2) is a small soluble protein critical for cholesterol transport within and from the lysosome and the late endosome. Intriguingly, npc2-mediated cholesterol transport has been shown to be modulated by lipids, yet the molecular mechanism of npc2-membrane interactions has remained elusive. Here, based on an extensive set of atomistic simulations and free energy calculations, we clarify the mechanism and energetics of npc2-membrane binding and characterize the roles of physiologically relevant key lipids associated with the binding process. Our results capture in atomistic detail two competitively favorable membrane binding orientations of npc2 with a low interconversion barrier. The first binding mode (Prone) places the cholesterol binding pocket in direct contact with the membrane and is characterized by membrane insertion of a loop (V59-M60-G61-I62-P63-V64-P65). This mode is associated with cholesterol uptake and release. On the other hand, the second mode (Supine) places the cholesterol binding pocket away from the membrane surface, but has overall higher membrane binding affinity. We determined that bis(monoacylglycero)phosphate (bmp) is specifically required for strong membrane binding in Prone mode, and that it cannot be substituted by other anionic lipids. Meanwhile, sphingomyelin counteracts bmp by hindering Prone mode without affecting Supine mode. Our results provide concrete evidence that lipids modulate npc2-mediated cholesterol transport either by favoring or disfavoring Prone mode and that they impose this by modulating the accessibility of bmp for interacting with npc2. Overall, we provide a mechanism by which npc2-mediated cholesterol transport is controlled by the membrane composition and how npc2-lipid interactions can regulate the transport rate.
منابع مشابه
Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.
Sphingolipids and glycosphingolipids are membrane components of eukaryotic cell surfaces. Their constitutive degradation takes place on the surface of intra-endosomal and intra-lysosomal membrane structures. During endocytosis, these intra-lysosomal membranes are formed and prepared for digestion by a lipid-sorting process during which their cholesterol content decreases and the concentration o...
متن کاملDegradation of bis(monoacylglycero)phosphate by an acid phosphodiesterase in rat liver lysosomes.
Bis(monoacylglycero)phosphate was purified from the livers of chloroquine-treated rats and labeled with tritium by a nonreductive catalytic exchange procedure. The mechanism of its degradation by rat liver lysosomes has been examined. A substantial amount of bis(monoacylglycero)P is degraded to monoglyceride and lysophosphatidic acid by a lysosomal phosphodiesterase having an acid pH optimum. S...
متن کاملTransformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase.
Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM...
متن کاملEffect of lysosomal storage on bis(monoacylglycero)phosphate.
BMP [bis(monoacylglycero)phosphate] is an acidic phospholipid and a structural isomer of PG (phosphatidylglycerol), consisting of lysophosphatidylglycerol with an additional fatty acid esterified to the glycerol head group. It is thought to be synthesized from PG in the endosomal/lysosomal compartment and is found primarily in multivesicular bodies within the same compartment. In the present st...
متن کاملDengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered alrea...
متن کامل